Parametric and Nonparametric Statistical Methods for Genomic Selection of Traits with Additive and Epistatic Genetic Architectures
نویسندگان
چکیده
Parametric and nonparametric methods have been developed for purposes of predicting phenotypes. These methods are based on retrospective analyses of empirical data consisting of genotypic and phenotypic scores. Recent reports have indicated that parametric methods are unable to predict phenotypes of traits with known epistatic genetic architectures. Herein, we review parametric methods including least squares regression, ridge regression, Bayesian ridge regression, least absolute shrinkage and selection operator (LASSO), Bayesian LASSO, best linear unbiased prediction (BLUP), Bayes A, Bayes B, Bayes C, and Bayes Cπ. We also review nonparametric methods including Nadaraya-Watson estimator, reproducing kernel Hilbert space, support vector machine regression, and neural networks. We assess the relative merits of these 14 methods in terms of accuracy and mean squared error (MSE) using simulated genetic architectures consisting of completely additive or two-way epistatic interactions in an F2 population derived from crosses of inbred lines. Each simulated genetic architecture explained either 30% or 70% of the phenotypic variability. The greatest impact on estimates of accuracy and MSE was due to genetic architecture. Parametric methods were unable to predict phenotypic values when the underlying genetic architecture was based entirely on epistasis. Parametric methods were slightly better than nonparametric methods for additive genetic architectures. Distinctions among parametric methods for additive genetic architectures were incremental. Heritability, i.e., proportion of phenotypic variability, had the second greatest impact on estimates of accuracy and MSE.
منابع مشابه
GENOMIC SELECTION Parametric and Nonparametric Statistical Methods for Genomic Selection of Traits with Additive and Epistatic Genetic Architectures
Parametric and nonparametric methods have been developed for purposes of predicting phenotypes. These methods are based on retrospective analyses of empirical data consisting of genotypic and phenotypic scores. Recent reports have indicated that parametric methods are unable to predict phenotypes of traits with known epistatic genetic architectures. Herein, we review parametric methods includin...
متن کاملPredictive Ability of Statistical Genomic Prediction Methods When Underlying Genetic Architecture of Trait Is Purely Additive
A simulation study was conducted to address the issue of how purely additive (simple) genetic architecture might impact on the efficacy of parametric and non-parametric genomic prediction methods. For this purpose, we simulated a trait with narrow sense heritability h2= 0.3, with only additive genetic effects for 300 loci in order to compare the predictive ability of 14 more practically used ge...
متن کاملThe Impact of Different Genetic Architectures on Accuracy of Genomic Selection Using Three Bayesian Methods
Genome-wide evaluation uses the associations of a large number of single nucleotide polymorphism (SNP) markers across the whole genome and then combines the statistical methods with genomic data to predict the genetic values. Genomic predictions relieson linkage disequilibrium (LD) between genetic markers and quantitative trait loci (QTL) in a population. Methods that use all markers simultaneo...
متن کاملمطالعه کنترل ژنتیکی برخی صفات مرتبط با عملکرد گندم نان (Triticum aestivum L.) در شرایط تنش خشکی با استفاده از تجزیه میانگین نسلها
Breeding programs strategies depends on genetical mechanism of selection traits. In the present research, generation mean analysis with joint scaling test was performed to determine the gene action. F1, F2 and F3 generations, derived from Roushan and Kavir cross along with their parents were sown in a partial Lattice design with two replications under stress condition at the research field of S...
متن کاملصحت انتخاب ژنومی روشهای پارامتری و ناپارامتری با معماریهای ژنتیکی افزایشی و غالبیت
In most genomic prediction studies only additive effects will be used in models for estimating genomic breeding values (GEBV). However, dominance genetic effects are an important source of variation for complex traits, considering them into account may improve the accuracy of GEBV. In the present study, performed applying simulated data, the effect of different heritability values (0.1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014